水文与水资源

中国天山积雪垂直分布异质性研究

  • 张博 ,
  • 李雪梅 ,
  • 秦启勇 ,
  • 李超 ,
  • 孙天瑶
展开
  • 1.兰州交通大学测绘与地理信息学院,甘肃 兰州 730070
    2.甘肃省地理国情监测工程实验室,甘肃 兰州 730070
    3.地理国情监测技术应用国家地方联合工程研究中心,甘肃 兰州 730070
张博(1996-),男,硕士研究生,主要从事积雪遥感研究. E-mail: 18235118550@163.com

收稿日期: 2021-09-13

  修回日期: 2021-11-08

  网络出版日期: 2022-05-31

基金资助

国家自然科学基金项目(41761014);兰州交通大学“百名青年优秀人才培养计划”;兰州交通大学优秀平台支持(201806)

Heterogeneity of the vertical distribution of snow cover in Chinese Tianshan Mountains

  • Bo ZHANG ,
  • Xuemei LI ,
  • Qiyong QIN ,
  • Chao LI ,
  • Tianyao SUN
Expand
  • 1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
    2. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, Gansu, China
    3. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, Gansu, China

Received date: 2021-09-13

  Revised date: 2021-11-08

  Online published: 2022-05-31

摘要

基于2001—2018年MOD10A2积雪产品和MOD11A2陆地表面温度数据,采用精细分区统计和相关性分析方法,研究了中国天山不同海拔高度上积雪垂直分布特征及其与地表温度(Land surface temperature,LST)的响应关系。结果表明:中国天山积雪覆盖率(Snow cover percentage,SCP)随海拔的变化呈现春、夏、秋、冬4种不同的季节变化模式。SCP在海拔4200 m以下呈秋冬季增加、春夏季减少态势,在海拔4200 m以上呈秋冬季减少、春夏季增加态势。除冬季外,春、夏、秋3个季节的SCP与LST均具有显著强负相关性。

本文引用格式

张博 , 李雪梅 , 秦启勇 , 李超 , 孙天瑶 . 中国天山积雪垂直分布异质性研究[J]. 干旱区地理, 2022 , 45(3) : 754 -762 . DOI: 10.12118/j.issn.1000-6060.2021.409

Abstract

Vertical variation of snow cover is important to understand the snow accumulation and decay, especially in topographically complex montane terrains, and was used in snowmelt runoff modeling and assessment of climate change impact on snow cover. On the basis of the snow product of MOD10A2 and land surface temperature (LST) data of MOD11A2 during 2001—2018, this study analyzed the vertical distribution of snow cover and its response to LST in Chinese Tianshan Mountains using zonal statistics and correlation analysis methods. The following results were obtained from the analysis: snow coverage percentage (SCP) showed four different seasonal patterns in spring, summer, autumn, and winter. The SCP in winter changed largely when the altitude rose. The SCP increased and then declined below 1200 m asl and reached the peak at 4000-4200 m. In addition, the SCP in spring and autumn increased gently and fell consistently with change in the altitude, and the peak of SCP was between 4800 and 5000 m asl. The SCP in summer rose significantly above 2800 m asl and reached the peak at 4800-5000 m asl and then fell rapidly. The intra-annual variation in SCP showed significant seasonal characteristics. The vertical distribution of SCP in high-altitude zones (E and F) in Chinese Tianshan Mountains was inverse to that in the middle- to low-altitude zones (A, B, C, and D) from October to April, but both of them were sensitive. The SCP was most sensitive to the relative middle-altitude zones (C and D) from May to September, whereas it was insensitive in the other four zones. The SCP in the A, B, E, and F districts had no change from April to October, and their changes were not sensitive compared with that in the C and D districts. Snow under 4200 m asl or less increased in autumn and winter and decreased in spring and summer, but this tendency was opposite for that above 4200 m asl. A strong negative correlation existed between SCP and LST in spring, summer, and autumn, and the correlation coefficient increased with rising altitude. The poor correlation in winter may be related to more snowfall in low-altitude areas, wind-blown snow effect, and temperature inversion in high-altitude areas. The negative correlation between SCP and LST initially increased and then decreased with the increase in the altitude. LST had the greatest influence on SCP from 3200 to 4200 m, whereas it had the least influence on SCP from 3200 to 4200 m because LST had no altitude gradient effect at altitudes below 1000 m and above 4200 m. Therefore, the negative correlation between SCP and LST in this region was not very strong. This study discussed in detail the vertical distribution of snow cover in Chinese Tianshan Mountains, which had a practical significance for snowmelt runoff in mountainous areas, rational dispatching, and utilization of water resources, combating snow disasters in pastoral areas in winter and flood disasters in spring and summer.

参考文献

[1] 易颖, 刘时银, 朱钰, 等. 2002-2018年叶尔羌河流域积雪时空变化研究[J]. 干旱区地理, 2021, 44(1): 15-26.
[1] Yi Ying, Liu Shiyin, Zhu Yu, et al. Spatiotemporal variation of snow cover in the Yarkant River Basin during 2002-2018[J]. Arid Land Geography, 2021, 44(1): 15-26. ]
[2] Romanov P, Gutman G, Csiszar I, et al. Automated monitoring of snow cover over North America with multispectral satellite data[J]. Journal of Applied Meteorology, 2000, 39(11): 1866-1880.
[3] 盛光伟, 肖鹏峰, 张学良, 等. 新疆天山及北疆地区积雪反照率差异[J]. 干旱区地理, 2019, 42(4): 774-781.
[3] [ Sheng Guangwei, Xiao Pengfeng, Zhang Xueliang, et al. Difference of snow albedo between Tianshan and northern Xinjiang[J]. Arid Land Geography, 2019, 42(4): 774-781. ]
[4] Chen Y, Li W, Deng H, et al. Changes in Central Asia’s water tower: Past, present and future[J]. Scientific Reports, 2016, 6(1): 35458, doi: 10.1038/srep39364.
[5] 穆振侠, 姜卉芳. 新疆阿克苏河流域昆马力克河积雪消融规律对气候变化的响应[J]. 冰川冻土, 2012, 34(6): 1284-1292.
[5] [ Mu Zhenxia, Jiang Huifang. Response of snow melting law of Kunmalike River to climate change in Aksu River Basin, Xinjiang[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1284-1292. ]
[6] Tang Z G, Wang J, Li H Y, et al. Spatiotemporal changes of snow cover over the Tibetan Plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011[J]. Journal of Applied Remote Sensing, 2013, 7(1): 3582, doi: 101117/1.JRS.7.073582.
[7] 除多, 达珍, 拉巴卓玛. 西藏高原积雪覆盖空间分布及地形影响[J]. 地球信息科学学报, 2017, 19(5): 635-645.
[7] [ Chu Duo, Da Zhen, Laba Zhuoma, et al. Spatial distribution and topographic influence of snow cover in Tibet Plateau[J]. Journal of Geo-Information Science, 2017, 19(5): 635-645. ]
[8] 陈文倩, 丁建丽, 马勇刚, 等. 亚洲中部干旱区积雪时空变异遥感分析[J]. 水科学进展, 2018, 29(1): 11-19.
[8] [ Chen Wenqian, Ding Jianli, Ma Yonggang, et al. Spatial-temproal variability of snow cover in arid regions of Central Asia[J]. Advances in Water Science, 2018, 29(1): 11-19. ]
[9] 卫仁娟, 彭亮, 梁川, 等. 基于MODIS雪盖数据的叶尔羌河流域积雪再分析[J]. 工程科学与技术, 2018, 50(6): 141-147.
[9] [ Wei Renjuan, Peng Liang, Liang Chuan, et al. Analysis of snow coverage in Yarkant River Basin based on MODIS snow data[J]. Advanced Engineering Sciences, 2018, 50(6): 141-147. ]
[10] 何海迪, 李忠勤, 张明军. 基于MODIS数据中国天山积雪面积时空变化特征分析[J]. 干旱区地理, 2018, 41(2): 367-374.
[10] [ He Haidi, Li Zhongqin, Zhang Mingjun. Spatio-temporal variation analysis of snow cover area of Tianshan Mountains in China using MODIS data[J]. Arid Land Geography, 2018, 41(2): 367-374. ]
[11] 秦艳, 丁建丽, 赵求东, 等. 2001-2015年天山山区积雪时空变化及其与温度和降水的关系[J]. 冰川冻土, 2018, 40(2): 249-260.
[11] [ Qin Yan, Ding Jianli, Zhao Qiudong, et al.Spatial-temporal variation of snow cover in the Tianshan Mountains from 2001 to 2015, and its relation to temperature and precipitation [J]. Journal of Glaciology and Geocryology, 2018, 40(2): 249-260. ]
[12] Wan Z. New refinements and validation of the MODIS land-surface temperature/emissivity products[J]. Remote Sensing of Environment, 2008, 112(1): 59-74.
[13] 管延龙, 王让会, 李成, 等. 基于MODIS数据的天山区域地表温度时空特征[J]. 应用生态学报, 2015, 26(3): 681-688.
[13] [ Guan Yanlong, Wang Ranghui, Li Cheng, et al. Spatial-temporal characteristics of land surface temperature in Tianshan Mountains area based on MODIS data[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 681-688. ]
[14] 徐永明, 覃志豪, 沈艳. 长江三角洲地区地表温度年内变化规律与气候因子的关系分析[J]. 国土资源遥感, 2010(1): 60-64.
[14] [ Xu Yongming, Tan Zhihao, Shen Yan. The relationship between inter-annual variations of land surface temperature and climate factors in the Yangtze River Delta[J]. Remote Sensing for Natural Resources, 2010(1): 60-64. ]
[15] 李雪梅, 高培, 李倩, 等. 中国天山积雪对气候变化响应的多通径分析[J]. 气候变化研究进展, 2016, 12(4): 303-312.
[15] [ Li Xuemei, Gao Pei, Li Qian, et al. Muti-paths impact from climate change on snow cover in Tianshan mountainous area of China[J]. Climate Change Research, 2016, 12(4): 303-312. ]
[16] 窦燕, 陈曦, 包安明, 等. 2000-2006年中国天山山区积雪时空分布特征研究[J]. 冰川冻土, 2010, 32(1): 28-34.
[16] [ Dou Yan, Chen Xi, Bao Anming, et al. Study of the temporal and spatial distribute of the snow cover in the Tianshan Mountains, China[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 28-34. ]
[17] Liu J P, Zhang W, Liu T. Monitoring recent changes in snow cover in Central Asia using improved MODIS snow-cover products[J]. Journal of Arid Land, 2017, 9(5): 763-777.
[18] 魏文寿, 袁玉江, 喻树龙, 等. 中国天山山区235 a气候变化及降水趋势预测[J]. 中国沙漠, 2008, 28(5): 803-808.
[18] [ Wei Wenshou, Yuan Yujiang, Yu Shulong, et al. Climate change in recent 235 years and trend prediction in Tianshan Mountainous area[J]. Journal of Desert Research, 2008, 28(5): 803-808. ]
[19] Sorg A, Bolch T, Stoffel M, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10): 725-731.
[20] 胡汝骥. 中国天山自然地理[M]. 北京: 中国环境科学出版社, 2004: 10-29.
[20] [ Hu Ruji. Physical geography of the Tianshan Mountains in China[M]. Beijing: China Environmental Science Press, 2004: 10-29. ]
[21] 黄晓东, 张学通, 李霞, 等. 北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J]. 冰川冻土, 2007, 29(5): 722-729.
[21] [ Huang Xiaodong, Zhang Xuetong, Li Xia, et al. Accuracy analysis for MODIS snow products of MOD10A1 and MOD10A2 in northern Xinjiang area[J]. Journal of Glaciology and Geocryology, 2007, 29(5): 722-729. ]
[22] 马勇刚, 黄粤, 陈曦, 等. 新疆积雪覆盖时空变异分析[J]. 水科学进展, 2013, 24(4): 483-489.
[22] [ Ma Yonggang, Huang Yue, Chen Xi, et al. Analyzing spatial-temporal variability of snow cover in Xinjiang[J]. Advances in Water Science, 2013, 24(4): 483-489. ]
[23] 唐志光, 王建, 王欣, 等. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
[23] [ Tang Zhiguang, Wang Jian, Wang Xin, et al. Spatiotemporal variation of snow cover in Tianshan Mountains based on MODIS[J]. Remote Sensing Technology and Application, 2017, 32(3): 556-563. ]
[24] 任艳群, 刘海隆, 包安明, 等. 基于SSM/I和MODIS数据的天山山区积雪深度时空特征分析[J]. 冰川冻土, 2015, 37(5): 1178-1187.
[24] [ Ren Yanqun, Liu Hailong, Bao Anming, et al. Spatial and temporal characteristics of snow depth in the Tianshan Mountains derived from SSM/I and MODIS data[J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1178-1187. ]
[25] 侯小刚, 李帅, 张旭, 等. 基于MODIS积雪产品的中国天山山区积雪时空分布特征研究[J]. 沙漠与绿洲气象, 2017, 11(3): 9-16.
[25] [ Hou Xiaogang, Li Shuai, Zhang Xu, et al. Study on spatial and temporal distribution of snow cover in Tianshan Mountains of China based on daily cloudless snow cover product of MODIS[J]. Desert and Oasis Meteorology, 2017, 11(3): 9-16. ]
[26] Li H Y, Wang J, Hao X H. Role of blowing snow in snow processes in Qilian mountainous region[J]. Sciences in Cold and Arid Regions, 2014, 6(2): 124-130.
[27] Beniston M. Is snow in the Alps receding or disappearing?[J]. WIREs Climate Change, 2012, 3(4): 349-358.
[28] Morán-Tejeda E, López-Moreno J I, Beniston M. The changing roles of temperature and precipitation on snowpack variability in Switzerland as a function of altitude[J]. Geophysical Research Letters, 2013, 40: 2131-2136.
[29] Pu Z, Xu L, Salomonson V V. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau[J]. Geophysical Research Letters, 2007, 34(6): 137-161.
[30] 肉克亚木·艾克木, 玉素甫江·如素力. 伊犁河谷流域积雪分布及其变化分析[J]. 测绘科学, 2020, 45(6): 157-164.
[30] [ Aikemu Roukeyamu, Rusuli Yusufujiang. Analysis of snow cover distribution and its changes in the Ili River Valley[J]. Science of Surveying and Mapping, 2020, 45(6): 157-164. ]
[31] Bi Y B, Xie H J, Huang C L, et al. Snow cover variations and controlling factors at upper Heihe River Basin, northwestern China[J]. Remote Sensing, 2015, 7(6): 6741-6762.
文章导航

/