气候变化

提孜那甫河流域地表太阳辐射估算及其影响因素分析

  • 张淑花 ,
  • 李新功 ,
  • 李奇虎 ,
  • 王默涵
展开
  • 1.西安科技大学测绘科学与技术学院,陕西 西安 710054
    2.中国科学院新疆生态与地理研究所荒漠洲生态国家重点实验室,新疆 乌鲁木齐 830011
    3.河北省地质调查院,河北 石家庄 050081
张淑花(1988-),女,博士,副教授,主要从事复杂地形区地表太阳辐射模拟等方面的研究. E-mail: shuhuazhang@xust.edu.cn

收稿日期: 2021-07-26

  修回日期: 2021-11-02

  网络出版日期: 2022-05-31

基金资助

新疆维吾尔自治区自然科学基金面上项目(2016D01A075)

Estimation of surface solar radiation and analysis of its influencing factors in the Tizinafu River Basin

  • Shuhua ZHANG ,
  • Xingong LI ,
  • Qihu LI ,
  • Mohan WANG
Expand
  • 1. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. Hebei Institute of Geological Survey, Shijiazhuang 050081, Hebei, China

Received date: 2021-07-26

  Revised date: 2021-11-02

  Online published: 2022-05-31

摘要

地表太阳辐射是地球表层主要能量来源,对地表能量平衡、能量交换以及生态水文过程等具有决定性意义。山区地形复杂,其地表太阳辐射时空差异较大且较难估算。采用适用于山区的地表太阳辐射模型对西北昆仑山提孜那甫河流域地表太阳辐射时空分布进行了估算,分析了该流域季节太阳辐射空间分布规律并探讨了地形和云2个重要因素对太阳辐射空间分布的影响。结果表明:(1) 地形因子中周围地形阻挡即地形开阔度(Sky view factor,SVF)与年总太阳辐射的关系最为显著,太阳辐射随SVF增加而增加。(2) 年总太阳辐射随着高程增加首先减少,再而随之增加。探究SVF随高程的变化,发现其与太阳辐射随高程的变化趋势较为一致,因此在山区复杂地形下地表太阳辐射估算中仅利用高程对其校正存在明显不足,需综合考虑地形效应。(3) 研究计算了季节云出现频率空间分布与太阳辐射空间分布的相关系数,结果表明夏季太阳辐射受云影响较其他季节显著。定量分析了地形因子以及云对地表太阳辐射空间分布影响的贡献率,周围地形阻挡SVF对地表太阳辐射空间分布的影响最大,高程和云次之。因此综合考虑地形和云对太阳辐射的影响在山区太阳辐射模拟中是非常必要的,研究可为山区地表太阳辐射模拟提供理论依据,并为山区生态水文过程研究提供方法支撑。

关键词: 山地; 太阳辐射; ; 地形

本文引用格式

张淑花 , 李新功 , 李奇虎 , 王默涵 . 提孜那甫河流域地表太阳辐射估算及其影响因素分析[J]. 干旱区地理, 2022 , 45(3) : 734 -745 . DOI: 10.12118/j.issn.1000-6060.2021.338

Abstract

Solar radiation is the main energy for surface energy balance. It is more complex to calculate the solar radiation over mountain areas than flat areas because of the complex terrain. We calculate the solar radiation in space and time for the Tizinafu River Basin that located northwest of the Tibetan Plateau in China. The seasonal solar radiation in space was analyzed on the basis of the calculations and we also discussed how the terrain and cloud affect the spatial pattern of solar radiation in the study area. The results show that sky view factor (SVF) has a significant connection with solar radiation. We also found that the annual solar radiation decreased first and then increased with elevation-increasing. That solar radiation did not increase with elevation-increasing was caused by surrounding terrain effect because the trend of the SVF and elevation change is similar to that of solar radiation and elevation change. As a result, the topographic effect with self-shading and surrounding-shading should be considered in the calculation of solar radiation over complex terrain. In addition, the cloud frequency also had a significant connection with solar radiation in space. However, the contribution of elevation, slope, aspect, SVF, and cloud to solar radiation was evaluated and the results demonstrated that SVF, elevation, and cloud had a significant effect on solar radiation. All these indicate that it is necessary to consider the integrated effect of terrain and cloud for solar radiation modeling over mountain terrain. This study provided more spatial and temporal details about surface solar radiation over mountain terrain and is important for solar radiation modeling and the study of ecohydrological processes.

参考文献

[1] 王根绪, 邓伟, 杨燕, 等. 山地生态学的研究进展、重点领域与趋势[J]. 山地学报, 2011, 29(2): 129-140.
[1] [ Wang Genxu, Deng Wei, Yang Yan, et al. The advances, priority and developing trend of alpine ecology[J]. Journal of Mountain Science, 2011, 29(2): 129-140. ]
[2] 李爱农, 尹高飞, 靳华安, 等. 山地地表生态参量遥感反演的理论、方法与问题[J]. 遥感技术与应用, 2016, 31(1): 1-11.
[2] [ Li Ainong, Yin Gaofei, Jin Hua’an, et al. Principles and methods for the retrieval of biophysical variables in mountainous areas[J]. Remote Sensing Technology and Application, 2016, 31(1): 1-11. ]
[3] 李爱农, 边金虎, 张正健, 等. 山地遥感主要研究进展、发展机遇与挑战[J]. 遥感学报, 2016, 20(5): 1199-1215.
[3] [ Li Ainong, Bian Jinhu, Zhang Zhengjian, et al. Progresses, opportunities, and challenges of mountain remote sensing research[J]. Journal of Remote Sensing, 2016, 20(5): 1199-1215. ]
[4] Tian Y Q, Davies-colley R J, Gong P, et al. Estimating solar radiation on slopes of arbitrary aspect[J]. Agricultural and Forest Meteorology, 2001, 109: 67-74.
[5] Kumar L. Effect of rounding off elevation values on the calculation of aspect and slope from a gridded digital elevation model[J]. Spatial Science, 2013, 58(1): 91-100.
[6] Fu P, Rich P M. Design and implementation of the solar analyst: An arcview extension for modeling solar radiation at landscape scales[C]// Proceedings of the 19th Annual ESRI User Conference. USA: San Diego, 1999.
[7] Marsh C B, Pomeory J, Spiteri R J. Implications of mountain shading on calculating energy for snowmelt using unstructured triangular meshes[J]. Hydrological Processes, 2012, 26: 1767-1778.
[8] 张美玲, 陈全功, 蒋文兰. 不同草地类型净初级生产力(NPP)模拟及其敏感性分析[J]. 干旱区地理, 2021, 44(2): 369-378.
[8] [ Zhang Meiling, Chen Quangong, Jiang Wenlan. Simulation and sensitivity analysis of net primary productivity (NPP) of different grassland types[J]. Arid Land Geography, 2021, 44(2): 369-378. ]
[9] 罗瑶, 彭文甫, 董永波, 等. 基于地理探测器下的川西高原地表温度空间格局及影响因子分析--以西昌市为例[J]. 干旱区地理, 2021, 43(3): 739-749.
[9] [ Luo Yao, Peng Wengfu, Dong Yongbo, et al. Geographical exploration of the spatial pattern of the surface temperature and its influencing factors in western Sichuan Plateau: A case of Xichang City[J]. Arid Land Geography, 2021, 43(3): 739-749. ]
[10] Mayer B. Radiative transfer in the cloudy atmosphere[J]. The European Physical Journal Conferences, 2009, 1: 75-99.
[11] Chen Y, Hall A, Liou K N. Application of three-dimensional solar radiative transfer to mountains[J]. Journal of Geophysical Research Atmospheres, 2006, 111(D21): 2156-2202.
[12] Liou K N, Lee W L, Hall A. Radiative transfer in mountains: Application to the Tibetan Plateau[J]. Geophysical Research Letters, 2007, 34: L23809, doi: 10.1029/2007GL031762.
[13] Wissmeier U, Buras R, Mayer B. paNTICA: A fast 3D radiative transfer scheme to calculate surface solar irradiance for NWP and LES models[J]. Journal of Applied Meteorology and Climatology, 2013, 52: 1698-1715.
[14] Wang T X, Yan G J, Mu X H, et al. Toward operational shortwave radiation modeling and retrieval over rugged terrain[J]. Remote Sensing of Environment, 2018, 205: 419-433.
[15] Ryu Y, Jiang C Y, Kobayashine H, et al. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000[J]. Remote Sensing of Environment, 2018, 204: 812-825.
[16] Letu H S, Yang K, Nakajima T, et al. High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite[J]. Remote Sensing of Environment, 2020, 239: 111583, doi: 10.1016/j.rse.2019.111583.
[17] Bisht G, Bras R L. Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study[J]. Remote Sensing of Environment, 2010, 114: 1522-1534.
[18] Van Laake P E, Sanchez-Azofeifa G A. Simplified atmospheric radiative transfer modelling for estimating incident PAR using MODIS atmosphere products[J]. Remote Sensing of Environment, 2004, 91(1): 98-113.
[19] Van Laake P E, Sanchez-Azofeifa G A. Mapping PAR using MODIS atmosphere products[J]. Remote Sensing of Environment, 2005, 94(4): 554-563.
[20] Roupioz L, Jia L, Nerry F, et al. Estimation of daily solar radiation budget at kilometer resolution over the Tibetan Plateau by integrating MODIS data products and a DEM[J]. Remote Sensing, 2018, 8: 504, doi: 10.3390/rs8060504.
[21] Houborg R, Soegaard H, Emmerich W, et al. Inferences of all-sky solar irradiance using Terra and Aqua MODIS satellite data[J]. International Journal of Remote Sensing, 2007, 28(20): 4509-4535.
[22] Zhang S H, Li X G, She J F, et al. Assimilating remote sensing data into GIS-based all sky solar radiation modeling for mountain terrain[J]. Remote Sensing of Environment, 2019, 231: 111239, doi: 10.1016/j.rse.2019.111239.
[23] Suri M, Hifuerka J. A new GIS-based solar radiation model and its application to photovoltaic assessments[J]. Transactions in GIS, 2004, 8: 175-190.
[24] Huang G H, Li Z Q, Li X, et al. Estimating surface solar irradiance from satellites: Past, present, and future perspectives[J]. Remote Sensing of Environment, 2019, 233: 111371, doi: 10.1016/j.rse.2019.111371.
[25] Letu H S, Shi J C, Li M, et al. A review of the estimation of downward surface shortwave radiation based on satellite data: Methods, progress and problems[J]. Science China Earth Sciences, 2020, 63: 774-789.
[26] Essery R, Marks D. Scaling and parametrization of clear-sky solar radiation over complex topography[J]. Journal of Geographical Research, 2007, 112: D10122, doi: 10.1029/2006JD007650.
[27] Hoch S W, Whiteman C D. Topographic effects on the surface radiation balance in and around Arizona’s meteor crater[J]. Journal of Applied Meteorology and Climatology, 2010, 49: 1114-1128.
[28] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
[28] [ Wang Jinfeng, Xu Chendong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. ]
[29] 黄盼, 赵伟, 李爱农. 川西山区太阳辐射估算及其时空分布特征[J]. 山地学报, 2017, 35(3): 420-428.
[29] [ Huang Pan, Zhao Wei, Li Ainong. Estimation of solar radiation and its spatio-temporal distribution characteristics in the mountainous area of western Sichuan[J]. Journal of Mountain Science, 2017, 35(3): 420-428. ]
文章导航

/