地表过程研究

高海拔干旱区湖泊沉积物多指标记录的环境变化研究——以阿克赛钦湖为例

  • 项超生 ,
  • 汪勇 ,
  • 王君波 ,
  • 马庆峰 ,
  • 王世航
展开
  • 1.安徽理工大学空间信息与测绘工程学院,安徽 淮南 232001
    2.安徽师范大学地理与旅游学院/江淮流域地表过程与区域响应安徽省重点实验室,安徽 芜湖 241002
    3.中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室,北京 100101
项超生(1995-),男,硕士研究生,主要从事湖泊沉积与过去环境变化等方面研究. E-mail: xcs1957840332@163.com

收稿日期: 2021-06-29

  修回日期: 2021-11-01

  网络出版日期: 2022-04-02

基金资助

国家自然科学基金项目(41771228);第二次青藏高原综合科学考察研究(2019QZKK0202);安徽师范大学校博士启动金项目资助(2017XJJ36)

Environmental changes recorded by multiproxy of lake sediments in the high-altitude and arid area: A case of Lake Aksayqin

  • Chaosheng XIANG ,
  • Yong WANG ,
  • Junbo WANG ,
  • Qingfeng MA ,
  • Shihang WANG
Expand
  • 1. School of Spatial Informatics and Geomatics Engineering, Anhui University of Science & Technology, Huainan 232001, Anhui, China
    2. Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, Anhui, China
    3. Key Laboratory of Tibetan Environment Changes and Land Surface Processes (TEL), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2021-06-29

  Revised date: 2021-11-01

  Online published: 2022-04-02

摘要

青藏高原西北部湖泊沉积物记录了丰富的区域气候环境变化信息,对于揭示青藏高原西风-季风环流系统变化及其相互作用过程具有重要意义。通过对青藏高原西北部高海拔干旱区典型湖泊阿克赛钦湖沉积岩芯粒度、总无机碳(Total inorganic carbon,TIC)、总有机碳(Total organic carbon,TOC)、总氮(Total nitrogen,TN)、碳氮比(C/N)和磁化率等环境代用指标的分析,探讨阿克赛钦湖不同沉积深度范围内湖泊水动力搬运条件、湖面变化及湖区冷暖变化等湖泊环境变化过程。结果表明:阿克赛钦湖沉积物有机质含量低,湖泊沉积物以粉砂为主,黏土次之,砂含量最少。多指标记录的环境变化大致分为以下4个阶段:第Ⅰ阶段(531~480 cm)气候相对温暖,流域蒸发较弱,湖泊水生生产力低,为湖泊水动力搬运条件弱的深水环境。第Ⅱ阶段(480~380 cm)气候寒冷干燥,流域蒸发强烈,湖泊水生生产力相对较高,为湖泊水动力搬运条件强的浅水环境。第Ⅲ阶段(380~160 cm)气候逐渐转暖,入湖水量增多,湖面扩张,湖泊水动力搬运条件逐渐减弱。第Ⅳ阶段(160~0 cm)气候寒冷干燥,流域蒸发增强,湖泊水生生产力低,为湖泊水动力搬运条件弱的深水环境。研究结果可为青藏高原西北部过去气候变化重建及西风-季风变化关系研究提供基础科学数据与理论支撑。

本文引用格式

项超生 , 汪勇 , 王君波 , 马庆峰 , 王世航 . 高海拔干旱区湖泊沉积物多指标记录的环境变化研究——以阿克赛钦湖为例[J]. 干旱区地理, 2022 , 45(2) : 435 -444 . DOI: 10.12118/j.issn.1000–6060.2021.295

Abstract

Lake Aksayqin, a typical large high-altitude lake located in the arid area of the northwestern Tibetan Plateau in China, is ideal for studying the changes in the Westerlies and Indian Summer Monsoon and the interplay between them. To reconstruct the paleoclimate changes of the lake, a 5.31 m long lake sediment core (AKLC15-1) was obtained at a water depth of 16.40 m. The grain size characteristics of the lake core were analyzed to investigate the hydrodynamics and lake-level changes. Based on the changes of multiple indicators, such as grain size results, total inorganic carbon, total organic carbon, total nitrogen, and magnetic susceptibility, we primarily discuss the changes in the lake environment, such as hydrodynamic transport conditions, lake surface changes, and cold and warm changes in the lake area under different sedimentary depths. The results show that the Lake Aksayqin area experiences a high rate of evaporation; the lake water is mainly supplied by glacier meltwater; and the organic matter content in lake sediments is low and mainly comes from endogenous aquatic organisms. The sediments of Lake Aksayqin are mainly composed of silt (70.48%), clay (27.64%), and sand (1.88%). The environmental change can be roughly divided into four stages. The first stage (531-480 cm) has a relatively warm climate, weakening evaporation in the basin, low aquatic productivity of the lake, and a deep-water environment with weak hydrodynamic transport conditions. In the second stage (480-380 cm), the climate is cold and dry, the evaporation in the basin is extremely strong, and the aquatic productivity of the lake is relatively high, which is a shallow water environment with strong hydrodynamic transport conditions. In the third stage (380-160 cm), the climate gradually warms. The amount of water entering the lake increases, the lake surface expands, and the hydrodynamic transport conditions of the lake gradually weaken. The fourth stage (160-0 cm) has a cold and dry climate with enhanced evaporation of the basin. The productivity of the lake is low; it has a deep-water environment with weak hydrodynamic transport conditions. This study will provide basic scientific data and theoretical support for reconstructing climatic changes and the relationship between the Westerlies and Indian Summer Monsoon in the northwestern Tibetan Plateau.

参考文献

[1] 沈吉. 湖泊沉积研究的历史进展与展望[J]. 湖泊科学, 2009, 21(3):307-313.
[1] [ Shen Ji. Progress and prospect of palaeolimnology research in China[J]. Journal of Lake Sciences, 2009, 21(3):307-313. ]
[2] 王君波. 纳木错百米岩芯: 青藏高原古气候变化的新证据[J]. 科学, 2021, 73(3):17-22.
[2] [ Wang Junbo. The one-hundred-meter sediment core from Nam Co: A new evidence for paleoclimate change on the Tibetan Plateau[J]. Science, 2021, 73(3):17-22. ]
[3] 周德全. 湖泊沉积记录与过去全球变化[J]. 矿物岩石地球化学通报, 2006, 25(3):260-265.
[3] [ Zhou Dequan. Lacustrine sedimentary records and past global change[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(3):260-265. ]
[4] 开金磊, 王君波, 黄磊, 等. 西藏纳木错及其入湖河流溶解有机碳和总氮浓度的季节变化[J]. 湖泊科学, 2019, 31(4):1099-1108.
[4] [ Kai Jinlei, Wang Junbo, Huang Lei, et al. Seasonal variations of dissolved organic carbon and total nitrogen concentrations in Nam Co and inflowing rivers, Tibet Plateau[J]. Journal of Lake Sciences, 2019, 31(4):1099-1108. ]
[5] 李明慧, 康世昌. 青藏高原湖泊沉积物对古气候环境变化的响应[J]. 盐湖研究, 2007, 15(1):63-72.
[5] [ Li Minghui, Kang Shichang. Responses of lake sediments to paleoenvironmental and paleoclimatic changes in Tibetan Plateau[J]. Journal of Salt Lake Research, 2007, 15(1):63-72. ]
[6] 王永波, 刘兴起, 羊向东, 等. 可可西里库赛湖揭示的青藏高原北部近4000年来的干湿变化[J]. 湖泊科学, 2008, 20(5):605-612.
[6] [ Wang Yongbo, Liu Xingqi, Yang Xiangdong, et al. A 4000-year moisture evolution recorded by sediments of Lake Kusai in the Hoh Xil area, northern Tibetan Plateau[J]. Journal of Lake Sciences, 2008, 20(5):605-612. ]
[7] 陈敬安, 万国江. 云南洱海沉积物粒度组成及其环境意义辨识[J]. 矿物学报, 1999, 19(2):175-182.
[7] [ Chen Jing’an, Wan Guojiang. Sediment particle size distribution and its environmental significance in Lake Erhai, Yunnan Province[J]. Acta Mineralogica Sinica, 1999, 19(2):175-182. ]
[8] 贺振杰, 马龙, 吉力力·阿不都外力, 等. 哈萨克斯坦巴尔喀什湖沉积物粒度特征及其对区域环境变化的响应[J]. 干旱区地理, 2021, 44(5):1317-1327.
[8] [ He Zhenjie, Ma Long, Abuduwaili Jilili, et al. Grain-size characteristics of lacustrine sediments from Balkhash Lake of Kazakhstan and its response to regional environmental changes[J]. Arid Land Geography, 2021, 44(5):1317-1327. ]
[9] 杜丁丁, Mughal Muhammad Saleem, Blaise Dembele, 等. 青藏高原中部色林错湖泊沉积物色度反映末次冰盛期以来区域古气候演化[J]. 干旱区地理, 2019, 42(3):551-558.
[9] [ Du Dingding, Mughal Muhammad Saleem, Blaise Dembele, et al. Paleoclimatic changes reflected by diffuse reflectance spectroscopy since last glacial maximum from Selin Co Lake sediments, central Qinghai-Tibetan Plateau[J]. Arid Land Geography, 2019, 42(3):551-558. ]
[10] 陈发虎, 陈建徽, 黄伟. 中纬度亚洲现代间冰期气候变化的“西风模式”讨论[J]. 地学前缘, 2009, 16(6):23-32.
[10] [ Chen Fahu, Chen Jianhui, Huang Wei. A discussion on the westerly-dominated climate model in mid-latitude Asia during the modern interglacial period[J]. Earth Science Frontiers, 2009, 16(6):23-32. ]
[11] Gasse F, Arnold M, Fontes J C, et al. A 13000-year climate record from western Tibet[J]. Nature, 1991, 353(6346):742-745.
[12] 李世杰, 郑本兴, 焦克勤. 西昆仑山南坡湖相沉积和湖泊演化的初步研究[J]. 地理科学, 1991, 11(4):306-314.
[12] [ Li Shijie, Zheng Benxing, Jiao Keqin. Preliminary research on lacustrine deposit and lake evolution on the south slope of the west Kunlun Mountains[J]. Scientia Geographica Sinica, 1991, 11(4):306-314. ]
[13] 李炳元. 青藏高原大湖期[J]. 地理学报, 2000, 55(2):174-182.
[13] [ Li Bingyuan. The last greatest lakes on the Xizang (Tibetan) Plateau[J]. Acta Geographica Sinica, 2000, 55(2):174-182. ]
[14] 李元芳, 张青松, 李炳元, 等. 青藏高原西北部17000年以来的介形类及环境演变[J]. 地理学报, 1994, 49(1):46-54.
[14] [ Li Yuanfang, Zhang Qingsong, Li Bingyuan, et al. Ostracod fauna and environmental changes during the past 17000 years in the western Tibet[J]. Acta Geographica Sinica, 1994, 49(1):46-54. ]
[15] 李元芳, 张青松, 李炳元, 等. 西藏班公错地区晚更新世晚期介形类及其古地理意义[J]. 微体古生物学报, 1991, 8(1):57-64.
[15] [ Li Yuanfang, Zhang Qingsong, Li Bingyuan, et al. Late pleistocene ostracoda from Bangong Lake, Xizang and its palaeogeographic significance[J]. Acta Micropalaeontologica Sinica, 1991, 8(1):57-64. ]
[16] Campo E V, Cour P, Sixuan H. Holocene environmental changes in Bangong Co Basin (western Tibet). Part 2: The pollen record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120(1-2):49-63.
[17] Campo E V, Gasse F. Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co Basin (western Tibet) since 13000 yr BP[J]. Quaternary Research, 1993, 39(3):300-313.
[18] Wei K, Gasse F. Oxygen isotopes in lacustrine carbonates of west China revisited implications for post glacial changes in summer monsoon circulation[J]. Quaternary Science Reviews, 1999, 18(12):1315-1334.
[19] Fontes J C, Gasse F, Gibert E. Holocene environmental changes in Lake Bangong Basin (western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120(1-2):25-47.
[20] Fontes J C, Mélières F, Gibert E, et al. Stable isotope and radiocarbon balances of two Tibetan lakes (Sumxi Co, Longmu Co) from 13000 BP[J]. Quaternary Science Reviews, 1993, 12(10):875-887.
[21] 王明达. 末次冰消期以来青藏高原西部班公错古气候重建[D]. 北京: 中国科学院大学, 2014: 71-83.
[21] [ Wang Mingda. Paleoclimate reconstruction of western Tibetan Plateau since the last deglaciation[D]. Beijing: University of Chinese Academy of Sciences, 2014: 71-83. ]
[22] Fan H, Gasse F, Huc A, et al. Holocene environmental changes in Bangong Co Basin (western Tibet). Part 3: Biogenic remains[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120(1-2):65-78.
[23] 王君波, 朱立平. 藏南沉错沉积物的粒度特征及其古环境意义[J]. 地理科学进展, 2002, 21(5):459-467.
[23] [ Wang Junbo, Zhu Liping. Grain-size characteristics and their paleo-environmental significance of Chen Co Lake sediments in southern Tibet[J]. Progress in Geography, 2002, 21(5):459-467. ]
[24] 刘兴起, 姚波, 杨波. 青藏高原北部可可西里库赛湖沉积物及风成物的粒度特征[J]. 第四纪研究, 2010, 30(6):1193-1198.
[24] [ Liu Xingqi, Yao Bo, Yang Bo. Grain size distribution of aeolian and lacustrine sediments of Kusai Lake in the Hoh Xil region of the northern Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2010, 30(6):1193-1198. ]
[25] 刘兴起, 王永波, 沈吉, 等. 16000 a以来青海茶卡盐湖的演化过程及其对气候的响应[J]. 地质学报, 2007, 81(6):843-849.
[25] [ Liu Xingqi, Wang Yongbo, Shen Ji, et al. Evolution of Chaka Salt Lake during the last 16000 years and its response to climatic change[J]. Acta Geologica Sinica, 2007, 81(6):843-849. ]
[26] 冯金良, 朱立平, 李玉香. 藏南沉错湖泊三角洲的沉积相及沉积环境[J]. 地理研究, 2004, 23(5):649-656.
[26] [ Feng Jinliang, Zhu Liping, Li Yuxiang. Sedimentary environments and facies about Chen Co lacustrine delta, south Tibetan Plateau[J]. Geographical Research, 2004, 23(5):649-656. ]
[27] 张家武, 金明, 陈发虎, 等. 青海湖沉积岩芯记录的青藏高原东北部过去800年以来的降水变化[J]. 科学通报, 2004, 49(1):10-14.
[27] [ Zhang Jiawu, Jin Ming, Chen Fahu, et al. High-resolution precipitation variations in the northeast Tibetan Plateau over the last 800 years documented by sediment cores of Qinghai Lake[J]. Chinese Science Bulletin, 2004, 49(1):10-14. ]
[28] 鞠建廷, 朱立平, 冯金良, 等. 粒度揭示的青藏高原湖泊水动力现代过程: 以藏南普莫雍错为例[J]. 科学通报, 2012, 57(19):1775-1784.
[28] [ Ju Jianting, Zhu Liping, Feng Jinliang, et al. Hydrodynamic process of Tibetan Plateau lake revealed by grain size: Case study of Pumayum Co[J]. Chinese Science Bulletin, 2012, 57(19):1775-1784. ]
[29] 类延斌, 张成君, 尚华明, 等. 青藏高原东北部希门错湖岩心粒度特征及其环境意义[J]. 海洋地质与第四纪地质, 2006, 26(3):31-38.
[29] [ Lei Yanbin, Zhang Chengjun, Shang Huaming, et al. The grain size characteristics of Ximencuo Lake core in the northeast Tibet Plateau and its environmental significance[J]. Marine Geology & Quaternary Geology, 2006, 26(3):31-38. ]
[30] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998: 352.
[30] [ Wang Sumin, Dou Hongshen. Chinese lakes[M]. Beijing: Science Press, 1998: 352. ]
[31] 李世杰, 郑本兴, 焦克勤. 西昆仑山区湖泊初探[J]. 海洋与湖沼, 1993, 24(1):37-44.
[31] [ Li Shijie, Zheng Benxing, Jiao Keqin. Lakes in the western Kunlun Mountain areas[J]. Oceanologia et Limnologia Sinica, 1993, 24(1):37-44. ]
[32] Zuo R G. ITRAX: A potential tool to explore the physical and chemical properties of mineralized rocks in mineral resource exploration[J]. Journal of Geochemical Exploration, 2013, 132:149-155.
[33] Gyawali A R, Wang J B, Ma Q F, et al. Paleo-environmental change since the Late Glacial inferred from lacustrine sediment in Selin Co, central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516:101-112.
[34] 王君波, 朱立平. 不同前处理对湖泊沉积物粒度测量结果的影响[J]. 湖泊科学, 2005, 17(1):17-23.
[34] [ Wang Junbo, Zhu Liping. Influence of different pre-treatments on grain-size measurement of lake sediments[J]. Journal of Lake Sciences, 2005, 17(1):17-23. ]
[35] 成都地质学院陕北队. 沉积岩(物)粒度分析及其应用[M]. 北京: 地质出版社, 1978: 31-54.
[35] [Shaanbei Team of Chengdu Geological College. Grain size analysis of the sedimentary rock (sediment) and its application[M]. Beijing: Geological Publishing House, 1978: 31-54. ]
[36] 沈吉, 薛滨, 吴敬禄, 等. 湖泊沉积与环境演化[M]. 北京: 科学出版社, 2010: 143-154.
[36] [ Shen Ji, Xue Bin, Wu Jinglu, et al. Lake sediment and environmental evolution[M]. Beijing: Science Press, 2010: 143-154. ]
[37] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1):3-27.
[38] Wang J B, Zhu L P, Wang Y, et al. A comparison of different methods for determining the organic and inorganic carbon content of lake sediment from two lakes on the Tibetan Plateau[J]. Quaternary International, 2012, 250:49-54.
[39] 范佳伟, 肖举乐, 温锐林, 等. 内蒙古达里湖沉积记录的中晚全新世干旱事件[J]. 第四纪研究, 2019, 39(3):701-716.
[39] [ Fan Jiawei, Xiao Jule, Wen Ruilin, et al. Middle to late Holocene drought events recorded by the sediments from Dali Lake, Inner Mongolia[J]. Quaternary Sciences, 2019, 39(3):701-716. ]
[40] 吴健, 沈吉. 兴凯湖沉积物粒度特征揭示的27.7 ka BP以来区域古气候演化[J]. 湖泊科学, 2010, 22(1):110-118.
[40] [ Wu Jian, Shen Ji. Paleoclimate evolution since 27.7 ka BP reflected by grain size variation of a sediment core from Lake Xingkai, northeastern Asia[J]. Journal of Lake Sciences, 2010, 22(1):110-118. ]
[41] Hassan K M, Swinehart J B, Spalding R F. Evidence for Holocene environmental change from C/N ratios, and 13C and 15N values in Swan Lake sediments, western Sand Hills, Nebraska[J]. Journal of Paleolimnology, 1997, 18(2):121-130.
[42] Krishnamurthy R V, Bhattacharya S K, Kusumgar S. Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa Lake sediments, India[J]. Nature, 1986, 323(11):150-152.
[43] 汪勇, 朱立平, 王君波, 等. 青藏高原中部纳木错湖泊表层沉积物有机质空间分布及其揭示的沉积过程[J]. 科学通报, 2012, 57(32):3090-3099.
[43] [ Wang Yong, Zhu Liping, Wang Junbo, et al. The spatial distribution and sedimentary processes of organic matter in surface sediments of Nam Co, central Tibetan Plateau[J]. Chinese Science Bulletin, 2012, 57(32):3090-3099. ]
[44] Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34(2):261-289.
[45] 李世杰, 区荣康, 朱照宇, 等. 24万年来西昆仑山甜水海湖岩芯碳酸盐含量变化与气候环境演化[J]. 湖泊科学, 1998, 10(2):58-65.
[45] [ Li Shijie, Ou Rongkang, Zhu Zhaoyu, et al. A carbonate content record of Late Quaternary climate and environment changes from lacustrine core TS95 in Tianshuihai Lake Basin, northwestern Qinghai-Xizang (Tibet) Plateau[J]. Journal of Lake Sciences, 1998, 10(2):58-65. ]
[46] Haberzettl T, Corbella H, Fey M, et al. Lateglacial and Holocene wet-dry cycles in southern Patagonia: Chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina[J]. The Holocene, 2016, 17(3):297-310.
文章导航

/