1961—2019年乌鲁木齐市暴雪环流分型及其成因分析
收稿日期: 2021-05-08
修回日期: 2021-06-15
网络出版日期: 2022-04-02
基金资助
第二次青藏高原综合科学考察研究项目(2019QZKK0102);国家重点研发计划“重大自然灾害监测预警与防范”专项资助(2019YFC 1510501)
Circulation classification and cause analysis of the snowstorm case in Urumqi City from 1961 to 2019
Received date: 2021-05-08
Revised date: 2021-06-15
Online published: 2022-04-02
利用1961—2019年降雪期乌鲁木齐市5个国家气象站日降水资料、NCEP逐日4次0.25°×0.25°和1°×1°再分析资料,统计分析乌鲁木齐市暴雪特征及大尺度环流形势,归纳出现暴雪的3种典型环流类型,并分别选取典型个例进行诊断和对比分析。结果表明:(1) 乌鲁木齐市暴雪发生频率以0.3次·(10a)-1趋势上升,具有准20 a振荡周期,发生次数最多为3月(40%),11月次之(32%)。(2) 乌鲁木齐市暴雪分为槽前西南气流型、高空槽东移型和强锋区型,强锋区型比例最高但降雪量小,槽前西南气流型持续时间长且降雪量最大,高空槽东移型最少但影响面积更大且雪强更强。(3) 乌鲁木齐市暴雪的主要影响系统为300 hPa极锋急流、500 hPa偏西或西南气流、700 hPa低空偏北急流和850 hPa西北气流。(4) 形成乌鲁木齐市暴雪的机制为低层偏北气流遇山堆积迫使暖湿空气抬升形成“冷垫”,并与500 hPa以上西南气流形成强垂直风切变和深厚的锋生区,但因三类过程强锋生维持时间和锋面斜率与伸展高度的不同使产生暴雪的原因有明显差异。(5) 暴雪的水汽输送主要为西南、偏西和西北路径,槽前西南气流型和高空槽东移型在西南气流引导下直接输送至暴雪区上空,强锋区型则由水汽的接力输送形成水汽汇合。本研究对乌鲁木齐市暴雪天气系统结构特征进行了分类和归纳,为预报服务提供有效参考依据。
李桉孛 , 万瑜 , 张俊 , 李如琦 , 芒苏尔·艾热提 , 李娜 . 1961—2019年乌鲁木齐市暴雪环流分型及其成因分析[J]. 干旱区地理, 2022 , 45(2) : 379 -388 . DOI: 10.12118/j.issn.1000–6060.2021.214
The area along the northern slope of the Tianshan Mountains has a high incidence of snowstorms in northern Xinjiang, China. As one of the main cities, Urumqi City has essential research value. Our research is based on the daily precipitation data of five national weather stations in Urumqi City during the snowfall period from 1961 to 2019 (November to March of the following year) and NCEP reanalysis data of 0.25°×0.25° and 1°×1° 4 times a day. Fifty-three times the characteristics of the snowstorm process and the large-scale circulation background are analyzed and summarized. Additionally, the Urumqi City snowstorm impact system is classified. Furthermore, the high and low altitude configurations of different types of snowstorms are synthesized and analyzed to obtain the structural characteristics of various systems. The results are as follows. (1) The frequency of snowstorms in Urumqi City increased by 0.3 times·(10a)-1, with a quasi-20-year oscillation period and the highest frequency of occurrence in March (40%), followed by November (32%). (2) The snowstorm in Urumqi City is divided into southwest airflow in front of the trough, eastward movement of the upper-altitude trough, and strong front area. The strong front area has the highest proportion, but the snowfall is small. The southwest airflow in front of the trough lasts for a long time, and the snowfall is the largest. The east-moving type is the least. Meanwhile, the affected area is larger, and the snow intensity is stronger. (3) The main impact systems of the snowstorm in Urumqi City are 300 hPa polar front jet, 500 hPa west or southwest airflow, 700 hPa low altitude northerly jet, and 850 hPa northwest. (4) The mechanism of the formation of the Urumqi City snowstorm is that the low-level northerly airflow meets the mountain accumulation to force the warm and humid air to uplift to form a “cold cushion”, and form a strong vertical wind shear and a deep frontogenesis zone with the southwest airflow above 500 hPa. However, the causes of the snowstorm are different due to the difference in the duration of the strong frontogenesis and front slope and extension height of the three processes. (5) The water vapor transport of the snowstorm is mainly southwest, west and northwest, and the southwest airflow pattern and high altitude in front of the trough. The eastward trough type is guided by the southwest airflow and is directly transported to the sky over the snowstorm area. In contrast, the strong front type is transported by the relay of water vapor to form a water vapor confluence. We summarized the system structure characteristics of Urumqi City snowstorm weather caused by different influence systems. Consequently, we obtained that there are significant differences. Further research can improve the understanding of the evolution process of snowstorms along the Tianshan Mountains in northern Xinjiang. By combing forecast ideas, we can provide effective forecast services reference basis.
[1] | 章诞武, 丛振涛, 倪广恒. 1956—2010年中国降雪特征变化[J]. 清华大学学报(自然科学版), 2016, 56(4):381-386, 393. |
[1] | [ Zhang Danwu, Cong Zhentao, Ni Guangheng. Snowfall changes in China during 1956—2010[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(4):381-386, 393. ] |
[2] | 孙秀忠, 罗勇, 张霞, 等. 近46年来我国降雪变化特征分析[J]. 高原气象, 2010, 29(6):1594-1601. |
[2] | [ Sun Xiuzhong, Luo Yong, Zhang Xia, et al. Analysis on snowfall change characteristic of China in recent 46 years[J]. Plateau Meteorology, 2010, 29(6):1594-1601. ] |
[3] | 陈海山, 罗江珊, 韩方红. 中国北方暴雪的年代际变化及其与大气环流和北极海冰的联系[J]. 大气科学学报, 2019, 42(1):68-77. |
[3] | [ Chen Haishan, Luo Jiangshan, Han Fanghong. Interdecadal variation of heavy snowfall in northern China and its linkages with atmospheric circulation and Arctic sea ice[J]. Transactions of Atmospheric Sciences, 2019, 42(1):68-77. ] |
[4] | 王遵娅, 周波涛. 影响中国北方强降雪事件年际变化的典型环流背景和水汽收支特征分析[J]. 地球物理学报, 2018, 61(7):2654-2666. |
[4] | [ Wang Zunya, Zhou Botao. Large-scale atmospheric circulations and water vapor transport influencing interannual variations of intense snowfalls in northern China[J]. Chinese Journal of Geophysics, 2018, 61(7):2654-2666. ] |
[5] | 付亮. 影响东北的北上温带气旋暴雪的统计特征和典型个例研究[D]. 南京: 南京信息工程大学, 2019. |
[5] | [ Fu Liang. Statistical characteristics and a case study of snowstorms associated with northward extratropical cyclones in northeast China[D]. Nanjing: Nanjing University of Information Science and Technology, 2019. ] |
[6] | 陈长胜, 王盘兴, 杨秀峰, 等. 东北地区暴雪天气的统计学划分方法及其时空分布特征[J]. 地理科学, 2012, 32(10):1275-1281. |
[6] | [ Chen Changsheng, Wang Panxing, Yang Xiufeng, et al. Classification and features of spatio-temporal variation of snowstorms in northeast China[J]. Science Geographic Sinica, 2012, 32(10):1275-1281. ] |
[7] | 周晓宇, 赵春雨, 崔妍, 等. 1961—2017年中国东北地区降雪时空演变特征分析[J]. 冰川冻土, 2020, 42(3):766-779. |
[7] | [ Zhou Xiaoyu, Zhao Chunyu, Cui Yan, et al. Analyzing the characteristics of temporal and spatial evolution of snowfall in northeast China from 1961 to 2017[J]. Journal of Glaciology and Geocryology, 2020, 42(3):766-779. ] |
[8] | 高松影, 赵婷婷, 宋丽丽, 等. 辽宁省冬季区域暴雪水汽输送特征[J]. 冰川冻土, 2020, 42(2):439-446. |
[8] | [ Gao Songying, Zhao Tingting, Song Lili, et al. Transporting characteristics of snowstorm water vapor over Liaoning Province in winter[J]. Journal of Glaciology and Geocryology, 2020, 42(2):439-446. ] |
[9] | 阎琦, 崔锦, 杨青. 2018年辽宁两次雨转暴雪过程对比分析[J]. 干旱气象, 2019, 37(6):944-953. |
[9] | [ Yan Qi, Cui Jin, Yang Qing. Comparative analysis of two rain to snowstorm processes in Liaoning in 2018[J]. Journal of Arid Meteorology, 2019, 37(6):944-953. ] |
[10] | 李津, 赵思雄, 孙建华. 一次华北破纪录暴雪成因的分析研究[J]. 气候与环境研究, 2017, 22(6):683-698. |
[10] | [ Li Jin, Zhao Sixiong, Sun Jianhua. Analysis of a record heavy snowfall event in north China[J]. Climate and Environmental Research, 2017, 22(6):683-698. ] |
[11] | 胡玲, 刘锦, 东高红, 等. 天津城区暴雪的环流形势与雷达特征分析[J]. 气象与环境科学, 2020, 43(1):34-42. |
[11] | [ Hu Ling, Liu Jin, Dong Gaohong, et al. Analysis on the circulation situation and radar characteristics of snowstorm in Tianjin City[J]. Meteorological and Environmental Sciences, 2020, 43(1):34-42. ] |
[12] | 王丛梅, 李永占, 刘晓灵. 河北省南部回流暴雪天气结构特征[J]. 气象与环境学报, 2015, 31(3):23-28. |
[12] | [ Wang Congmei, Li Yongzhan, Liu Xiaoling. Structural feature of return-flow snowstorm in southern Hebei Province[J]. Journal of Meteorology and Environment, 2015, 31(3):23-28. ] |
[13] | 陈雪珍, 慕建利, 赵桂香, 等. 华北暴雪过程中的急流特征分析[J]. 高原气象, 2014, 33(4):1069-1075. |
[13] | [ Chen Xuezhen, Mu Jianli, Zhao Guixiang, et al. Analysis of jet stream characteristic during the snowstorm in north China[J]. Plateau Meteorology, 2014, 33(4):1069-1075. ] |
[14] | 张俊兰, 崔彩霞, 陈春艳. 北疆典型暴雪天气的水汽特征研究[J]. 高原气象, 2013, 32(4):1115-1125. |
[14] | [ Zhang Junlan, Cui Caixia, Chen Chunyan. Study on water vapor characteristics of typical heavy snowstorm case in northern Xinjiang[J]. Plateau Meteorology, 2013, 32(4):1115-1125. ] |
[15] | 王勇, 赵战成, 晏军, 等. 新疆雪灾的时空分布特征及其等级划分[J]. 干旱区地理, 2020, 43(3):577-583. |
[15] | [ Wang Yong, Zhao Zhancheng, Yan Jun, et al. Spatial and temporal distribution characteristics and its classification of snow disaster in Xinjiang[J]. Arid Land Geography, 2020, 43(3):577-583. ] |
[16] | 田亚林, 李雪梅, 李珍, 等. 1980—2017年天山山区不同降水形态的时空变化[J]. 干旱区地理, 2020, 43(2):308-318. |
[16] | [ Tian Yalin, Li Xuemei, Li Zhen, et al. Spatial and temporal variations of different precipitation types in the Tianshan Mountains from 1980 to 2017[J]. Arid Land Geography, 2020, 43(2):308-318. ] |
[17] | 庄晓翠, 李博渊, 李如琦, 等. 新疆北部强降雪天气研究若干进展[J]. 沙漠与绿洲气象, 2016, 10(1):1-8. |
[17] | [ Zhuang Xiaocui, Li Boyuan, Li Ruqi, et al. Some advances on study of strong snowfall in northern Xinjiang[J]. Desert and Oasis Meteorology, 2016, 10(1):1-8. ] |
[18] | 杨莲梅, 杨涛, 贾丽红, 等. 新疆大~暴雪气候特征及其水汽分析[J]. 冰川冻土, 2005, 27(3):389-396. |
[18] | [ Yang Lianmei, Yang Tao, Jia Lihong, et al. Analysis of the climate characteristics and water vapor of heavy snow in Xinjiang Region[J]. Journal of Glaciology and Geocryology, 2005, 27(3):389-396. ] |
[19] | 万瑜, 窦新英. 新疆中天山一次城市暴雪过程诊断分析[J]. 气象与环境学报, 2013, 29(6):8-14. |
[19] | [ Wan Yu, Dou Xinying. Diagnostic analysis of an urban snowstorm process in the middle of Tianshan Mountains of Xinjiang[J]. Journal of Meteorology and Environment, 2013, 29(6):8-14. ] |
[20] | 张俊兰, 万瑜, 闵月. 乌鲁木齐“2015·12·11”极端暴雪天气的综合分析[J]. 沙漠与绿洲气象, 2017, 11(1):1-10. |
[20] | [ Zhang Junlan, Wan Yu, Min Yue. Comprehensive analysis of an extreme blizzard in Urumqi on December 11th, 2015[J]. Desert and Oasis Meteorology, 2017, 11(1):1-10. ] |
[21] | 庄晓翠, 李健丽, 李博渊, 等. 天山北坡2次暴雪过程机理分析[J]. 沙漠与绿洲气象, 2019, 13(1):29-38. |
[21] | [ Zhuang Xiaocui, Li Jianli, Li Boyuan, et al. Mechanism analysis of two class blizzard process in the north slope of Tianshan Mountains[J]. Desert and Oasis Meteorology, 2019, 13(1):29-38. ] |
[22] | 牟欢, 赵丽, 孙硕阳, 等. 天山北麓两次暴雪天气对比分析[J]. 干旱区地理, 2019, 42(6):1262-1272. |
[22] | [ Mu Huan, Zhao Li, Sun Shuoyang, et al. Comparative analysis of two blizzard weather mechanisms in the northern piedmonts of Tianshan Mountains[J]. Arid Land Geography, 2019, 42(6):1262-1272. ] |
[23] | 肖开提·多莱特. 新疆降水量级标准的划分[J]. 沙漠与绿洲气象, 2005, 28(3):7-8. |
[23] | [ Duolaite Xiaokaiti. Classification of precipitation magnitude standard in Xinjiang[J]. Desert and Oasis Meteorology, 2005, 28(3):7-8. ] |
/
〈 |
|
〉 |