区域发展

关系依赖如何影响全球化城市网络的生长发育——以苹果手机供应商为例

  • 刘清 ,
  • 蒋小荣
展开
  • 1.中山大学地理科学与规划学院,广东 广州 510275
    2.湖北文理学院资源环境与旅游学院,湖北 襄阳 441053
    3.武汉大学经济与管理学院,湖北 武汉 430072
刘清(1995-),女,博士,主要从事全球价值链、城市网络研究. E-mail: liuqinglwz@163.com

收稿日期: 2021-05-02

  修回日期: 2021-06-15

  网络出版日期: 2022-01-21

基金资助

国家自然科学基金项目(41571155);教育部人文社科基金青年项目(20YJCZH057)

How does relationship dependence affect the spatial growth of globalizing city networks: A case of iPhone’s suppliers

  • Qing LIU ,
  • Xiaorong JIANG
Expand
  • 1. School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
    2. College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
    3. Economics and Management School, Wuhan University, Wuhan 430072, Hubei, China

Received date: 2021-05-02

  Revised date: 2021-06-15

  Online published: 2022-01-21

摘要

当下城市网络研究中存在相对重结构特征测度、轻影响机理分析的问题,而在城市网络影响机理的研究中,又存在重理论定性的宏观描述或基于独立变量的常规性统计分析,轻从图论、结构视角的城市网络微观发育机理研究。因此,从结构关系依赖视角出发,基于苹果手机2019年供应商数据构建研发型、生产型、代工服务型全球化城市网络,运用指数随机图模型的微观构型测度城市网络的生长发育机理。结果表明:(1) 互惠性与中介效应在3类城市网络普遍存在,深刻影响城市网络的通性发育机理。(2) 偏好依附过程与接收者、发送者效应是解释城市网络等级中心性发育的结构机理,二者都体现了城市网络发育中以入度为核心的路径依赖现象。(3) 三角形结构(传递三角形与循环三方组)和同质性是促进城市网络集群发育、富人俱乐部现象的微观基础,同质性对城市网络的发育机理主要体现在核心城市间的联结关系上。(4) 企业路径依赖与距离是影响城市网络发育的核心外生因素。其中,对距离的分类讨论发现,地理邻近性对3类城市网络存在便在性影响。认知邻近性在研发型城市网络对长距离联系的影响与敏感度更大;在生产型城市网络中对中等距离有正向影响,代工服务型城市网络对短距离阈值敏感。该研究对丰富与拓展现有城市网络影响机理的研究视角有重要意义。

本文引用格式

刘清 , 蒋小荣 . 关系依赖如何影响全球化城市网络的生长发育——以苹果手机供应商为例[J]. 干旱区地理, 2022 , 45(1) : 310 -324 . DOI: 10.12118/j.issn.1000–6060.2021.198

Abstract

Recently there has been an increase in the number of the relationship turns and the evolution of new economic geography, which facilities the transformation of city network research, namely, from structural characteristics to influence mechanism. In light of the existing research progress, the paper introduces microconfiguration through the lens of the structural perspective to investigate the growth and development mechanism of city networks. To be more specific, initially, the city networks of R&D-oriented, production-oriented, and OEM service-oriented are specified built based on the suppliers’ data of iPhone’s components and parts in 2019, and afterward, we conduct motif analysis and exponential random graph model (ERGM) to examine the microprocesses in the spatial growth of city networks. The results demonstrate that: (1) reciprocity and the intermediary effect are widely and commonly distributed in the three types of city networks, which profoundly affect connectivity development and promote the growth of the hierarchical structure and the availability of the entire network. (2) The process of preferential attachment and the effect of receiver and sender (branches) constitute core structural mechanisms interpreting hierarchical centrality pattern of city networks, both of them embody the phenomenon of path dependence centered on in-degree centrality in the growth processes of city networks. (3) Triangle structure (transitive triangle and circular triad motif) and homogeneity are micro basis components that promote the cluster growth and community structure of city network and the phenomenon of rich clubs. Moreover, the homogeneity influence on the spatial growth of city networks is primarily reflected in the linkages between core cities. (4) Enterprises’ path dependence and distance are the main external factors that drive and affect the growth of city networks. Overall, in the current city network research, there is still a problem that quite focuses on measuring structural characteristics, while ignoring the analysis of the influence mechanism. Furthermore, in the existing literature on the influence mechanism of city networks, many researchers focus on a qualitative macro description based on independent variables, nevertheless, but little on the micro growth and development mechanism of city networks from the standpoint of graph theory and structuralism. Hence, a microconfiguration of ERGM is used through the lens of relationship dependence in this paper, subsequently; we introduce exogenous covariates and endogenous structural variables into the hypothesis verification of city network influence mechanism, which is very important for broadening the research scope of the influence mechanism of the existing city network research.

参考文献

[1] Dicken P. Global shift: Reshaping the global economic map in the 21st century[M]. Beijing: The Commercial Press, 2009.
[2] 宁越敏. 企业空间组织与城市-区域发展[M]. 北京: 科学出版社, 2011.
[2] [Ning Yuemin. Spatial organization of enterprise and development of city-regional[M]. Beijing: Science Press, 2011. ]
[3] 陈肖飞, 苗长虹, 潘少奇, 等. 轮轴式产业集群内企业网络特征及形成机理——基于2014年奇瑞汽车集群实证分析[J]. 地理研究, 2018, 37(2):353-365.
[3] [Chen Xiaofei, Miao Changhong, Pan Shaoqi, et al. Characteristics and construction mechanism of enterprise networks in “Hub-and-Spoke” cluster: Empirical evidence from Chery cluster in 2014, China[J]. Geographical Research, 2018, 37(2):353-365. ]
[4] 刘清, 杨永春, 蒋小荣, 等. 基于全球价值链的全球化城市网络分析:以苹果手机供应商为例[J]. 地理学报, 2021, 76(4):870-887.
[4] [Liu Qing, Yang Yongchun, Jiang Xiaorong, et al. An analysis of the multidimensional globalizing city networks based on global value chain: A case study of iPhone’s suppliers[J]. Acta Geographica Sinica, 2021, 76(4):870-887. ]
[5] 刘清, 杨永春, 蒋小荣. 全球价值生产的空间组织: 以苹果手机供应链为例[J]. 地理研究, 2020, 39(12):93-112.
[5] [Liu Qing, Yang Yongchun, Jiang Xiaorong. Spatial organization of global value production: A case study of supply chain of Apple’s iPhone[J]. Geographical Research, 2020, 39(12):93-112. ]
[6] 李仙德. 基于上市公司网络的长三角城市网络空间结构研究[J]. 地理科学进展, 2014, 33(12):1587-1600.
[6] [Li Xiande. Spatial structure of the Yangtze River Delta urban network based on the pattern of listed companies network[J]. Progress in Geography, 2014, 33(12):1587-1600. ]
[7] 薛德升, 邹小华. 基于中资商业银行全球空间扩展的世界城市网络及其影响因素[J]. 地理学报, 2018, 73(6):989-1001.
[7] [Xue Desheng, Zou Xiaohua. The world city network based on the global expansion of Chinese commercial banks and its influencing factors[J]. Acta Geographica Sinica, 2018, 73(6):989-1001. ]
[8] 盛科荣, 杨雨, 孙威. 中国城市的网络地位及影响因素研究——基于上市公司500强企业网络视角[J]. 地理科学, 2020, 40(5):68-78.
[8] [Sheng Kerong, Yang Yu, Sun Wei. Network position and underlying factors of cities in China: A study from corporate networks of the largest 500 public companies[J]. Scientia Geographica Sinica, 2020, 40(5):68-78. ]
[9] 袁红林, 辛娜. 中国高端制造业的全球贸易网络格局及其影响因素分析[J]. 经济地理, 2019, 39(6):108-117.
[9] [Yuan Honglin, Xin Na. Global trade network pattern and influencing factors of advanced manufacturing in China[J]. Economic Geography, 2019, 39(6):108-117. ]
[10] 邵璇璇, 姚永玲. 长江中游城市群的空间网络特征及其影响机制[J]. 城市问题, 2019(10):15-26.
[10] [Shao Xuanxuan, Yao Yongling. Spatial network characteristics and influence mechanism of urban agglomerations in the middle reaches of the Yangtze River[J]. Urban Problems, 2019(10):15-26. ]
[11] 盛广耀. 中国省际人口流动网络的演化及其解释[J]. 中国人口·资源与环境, 2018, 28(11):1-9.
[11] [Sheng Guangyao. Study on the evolution and explanation of inter-provincial population flow network in China[J]. China Population, Resources and Environment, 2018, 28(11):1-9. ]
[12] 盛科荣, 张红霞, 赵超越. 中国城市网络关联格局的影响因素分析——基于电子信息企业网络的视角[J]. 地理研究, 2019, 38(5):32-46.
[12] [Sheng Kerong, Zhang Hongxia, Zhao Chaoyue. Determinants of the urban spatial network in China: An analysis through the lens of corporate networks within electronic information industry[J]. Geographical Research, 2019, 38(5):32-46. ]
[13] Chong Z, Pan S. Understanding the structure and determinants of city network through intra-firm service relationships: The case of Guangdong-Hong Kong-Macao Greater Bay Area[J]. Cities, 2020, 103(5):1-11.
[14] Liu X, Derudder B, Liu Y. Regional geographies of intercity corporate networks: The use of exponential random graph models to assess regional network formation[J]. Regional Science, 2015, 94(1):109-126.
[15] Ma D, Yu Q, Li J, et al. Innovation diffusion enabler or barrier: An investigation of international patenting based on temporal exponential random graph models[J]. Technology in Society, 2020, 64:1-12.
[16] 刘林青, 陈紫若, 田毕飞. 结构依赖如何影响贸易网络形成及演化: 以“一带一路”为例[J]. 世界经济研究, 2020, 316(6):107-121, 138.
[16] [Liu Linqing, Chen Ziruo, Tian Bifei. How does structural dependence affect the formation and evolution of trade network: An empirical analysis based on “the Belt and Road”[J]. World Economy Studies, 2020, 316(6):107-121, 138. ]
[17] 马卫, 黄晓燕, 曹小曙. “一带一路”沿线国家开放度时空格局及其影响因素[J]. 干旱区地理, 2020, 43(5):207-219.
[17] [Ma Wei, Huang Xiaoyan, Cao Xiaoshu. Spatio-temporal pattern of openness of countries along the Belt and Road Initiative and its influencing factors[J]. Arid Land Geography, 2020, 43(5):207-219. ]
[18] Boschma R A, Frenken K. Why is economic geography not an evolutionary science? Towards an evolutionary economic geography[J]. Journal of Economic Geography, 2006, 6(3):273-302.
[19] 李从容, 向文倩. 关中平原城市群中心城市空间联系强度研究[J]. 干旱区地理, 2020, 43(6):1593-1602.
[19] [Li Congrong, Xiang Wenqian. Spatial connection intensity of central cities in Guanzhong Plain City Group[J]. Arid Land Geography, 2020, 43(6):1593-1602. ]
[20] Hymer S. The multinational corporation and the law of uneven development: Perspectives on world politics[M]. London: Routledge, 2006.
[21] Lusher D, Koskinen J, Robins G. Exponential random graph models for social networks: Theory, methods, and applications[M]. Cambridge: Cambridge University Press, 2013.
[22] Zhang F, Ning Y M, Lou X Y. The evolutionary mechanism of China’s urban network from 1997 to 2015: An analysis of air passenger flows[J]. Cities, 2020, 103(5):1-10.
[23] Davis J A, Leinhardt, S. The structure of positive relations in small groups[C]// Berger J, Zelditch M, Anderson B, et al. Sociological Theories in Progress. Boston, MA: Houghton Mifflin, 1972: 218-251.
文章导航

/