关中平原城市群经济联系网络结构演变及对经济增长影响研究
收稿日期: 2021-04-10
修回日期: 2021-05-19
网络出版日期: 2022-01-21
基金资助
陕西省可持续发展实验区建设相关技术集成研究项目(2018K01-117);陕西省科技厅攻关项目(2019K13-G18);西北大学科研启动基金项目(360051900075)
Evolution of economic connection network structure in the Guanzhong Plain City Cluster and its impact on economic growth
Received date: 2021-04-10
Revised date: 2021-05-19
Online published: 2022-01-21
引用城市流强度修正传统引力模型构建经济联系矩阵,运用社会网络分析方法对2008—2018年关中平原城市群经济联系网络结构演变特征及对经济增长的影响进行分析。结果表明:(1) 城市群中心性水平较弱,经济网络处于极化发展期,区域发展不平衡问题突出。(2) 西安影响力不断增大,非核心城市影响力降低,在区域内形成“灯影效应”。(3) 凝集子群内部的集聚程度由松散向紧密发展,城市三级凝聚子群与城市所在省级行政区划分由不耦合演变为全部耦合。(4) 城市群平均核心度值水平较低且逐渐升高,核心区域由西安单核心演变为西安、咸阳双核心发展结构。(5) 城市的中心性、影响力及集聚性对城市经济增长的影响存在差异。
叶珊珊 , 曹明明 , 胡胜 . 关中平原城市群经济联系网络结构演变及对经济增长影响研究[J]. 干旱区地理, 2022 , 45(1) : 277 -286 . DOI: 10.12118/j.issn.1000–6060.2021.162
The Guanzhong Plain City Cluster is located in northwest China, in the provinces of Shaanxi, Shanxi, and Gansu, a less developed region of China. The Guanzhong Plain City Cluster, the second-largest in inland China and one of the country’s eight most important city clusters serve as a vital gateway to western China. The development of the Guanzhong Plain City Cluster plays an important exemplary role and is strategically significant for regional harmonious development, new urbanization construction, and the Belt and Road Initiative. The research used UCINET and ArcGIS to analyze the evolution of 11 cities’ economic network structure in the Guanzhong Plain City Cluster from centrality, influences, “core-peripheral” structure, and cohesive subgroups by social network analysis using city economic data from 2008 to 2018. Then the regression model is constructed to analyze the influence of network structure properties on economic growth, and the suggestions to improve regional economic growth has been put forward from the perspective of economic network structure. The findings indicate that (1) the centrality of the city cluster’s network is insufficient with a decreasing trend, city centrality degree varies greatly, and the changes in centrality are different in different cities; regional sub-centers are severely underdeveloped, and the development of the economic network is dominated by polarization effect, indicating that regional development is unbalanced. (2) Xi’an has the greatest efficiency and lowest constraint, as well as the greatest influence with a growing trend in the city cluster, while the influence of non-core cities is relatively declining, which causes the “shadow effect” on surrounding cities. (3) The internal agglomeration of cohesive categories evolves from loose to close; in 2018, the cohesive subgroup presents a significant hierarchy, displaying a “pyramid” distribution; city subgroups and administrative division evolve from uncoupled to fully coupled, indicating that geographical proximity and administrative division are endogenous driving forces for the development of an economic network of the Guanzhong Plain City Cluster. (4) Based on the “core-peripheral” structure analysis, the city cluster has a low level of mean coreness with the growing trend which means that the degree of agglomeration in the economic network is gradually increasing; The economic network developed a core-peripheral structure, first with Xi’an as the core in 2008, and then with Xi’an and Xianyang as the core group between 2013 and 2018. (5) Regression analysis results show that the centrality, influence, and agglomeration of urban nodes have different effects on urban economic growth; more specifically, centrality and efficiency have a significant and positive correlation with economic growth, the constraint has a positive correlation with economic growth and coreness is non-significant.
[1] | Castells M. Grassrooting the space of flows[J]. Urban Geography, 1999, 20(4):294-302. |
[2] | Carrington P J, Scoot J, Wasserman S. Models and methods in social network analysis[M]. Cambridge: Cambridge University Press, 2005. |
[3] | Taylor P J, Evans D M, Pain K. Application of the interlocking network model to mega-city-regions: Measuring polycentricity within and beyond city-regions[J]. Regional Studies, 2008, 42(8):1079-1093. |
[4] | Taylor P J. Specification of the world city network[J]. Geographical Analysis, 2001, 33(2):181-194. |
[5] | Taylor P J, Hoyler M, Verbruggen R. External urban relational process: Introducing central flow theory to complement central place theory[J]. Urban Studies, 2010, 47(13):2803-2818. |
[6] | Crespo J, Suire R, Vicente J. Lock-in or lock-out? How structural properties of knowledge networks affect regional resilience[J]. Journal of Economic Geography, 2014, 14(1):199-219. |
[7] | Reilly W J. The law of retail gravitation[M]. New York: The Knickerbocker, 1931. |
[8] | Mikkonen K, Luoma M. The parameters of the gravity model are changing: How and why?[J]. Journal of Transport Geography, 1999, 7(4):277-283. |
[9] | Carrère C. Revisiting the effects of regional trade agreements on trade flows with proper specification of the gravity model[J]. European Economic Review, 2006, 50(2):223-247. |
[10] | Shen G. Reverse-fitting the gravity model to inter-city airline passenger flows by an algebraic simplification[J]. Journal of Transport Geography, 2004, 12(3):219-234. |
[11] | 顾朝林, 庞海峰. 基于重力模型的中国城市体系空间联系与层域划分[J]. 地理研究, 2008, 27(1):1-12. |
[11] | [Gu Chaolin, Pang Haifeng. Study on spatial relations of Chinese urban system: Gravity model approach[J]. Geographical Research, 2008, 27(1):1-12. ] |
[12] | 胡盈, 张津, 刘转花, 等. 基于引力模型和城市流的长江中游城市群空间联系研究[J]. 现代城市研究, 2016(1):52-57. |
[12] | [Hu Ying, Zhang Jin, Liu Zhuanhua, et al. The research of the middle reaches of the Yangtze River’s spatial contact: Based on the gravity model and the urban flow[J]. Modern Urban Research, 2016(1):52-57. ] |
[13] | 于谨凯, 马健秋. 山东半岛城市群经济联系空间格局演变研究[J]. 地理科学, 2018, 38(11):1875-1882. |
[13] | [Yu Jinkai, Ma Jianqiu. Spatial pattern evolution of economic links in Shandong Peninsula urban agglomeration[J]. Scientia Geographica Sinica, 2018, 38(11):1875-1882. ] |
[14] | 钟业喜, 冯兴华, 文玉钊. 长江经济带经济网络结构演变及其驱动机制研究[J]. 地理科学, 2016, 36(1):10-19. |
[14] | [Zhong Yexi, Feng Xinghua, Wen Yuzhao. The evolvement and driving mechanism of economic network structure in the Changjiang River Economic Zone[J]. Scientia Geographica Sinica, 2016, 36(1):10-19. ] |
[15] | 国家发展和改革委员会. 关中平原城市群发展规划[EB/OL]. [2020-08-29]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201802/t20180207_962246.html . |
[15] | [National Development and Reform Commission. The development plan of the Guanzhong Plain City Cluster[EB/OL]. [2020-08-29]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201802/t20180207_962246.html . ] |
[16] | 种照辉, 覃成林, 叶信岳. 城市群经济网络与经济增长——基于大数据与网络分析方法的研究[J]. 统计研究, 2018, 35(1):13-21. |
[16] | [Chong Zhaohui, Qin Chenglin, Ye Xinyue. Economic networks and economic growth of urban agglomeration: An integrated approach of big data and network analysis[J]. Statistical Research, 2018, 35(1):13-21. ] |
[17] | 郑蔚, 许文璐, 陈越. 跨区域城市群经济网络的动态演化——基于海西、长三角、珠三角城市群分析[J]. 经济地理, 2019, 39(7):58-66, 75. |
[17] | [Zheng Wei, Xu Wenlu, Chen Yue. Dynamic evolution of economic network within inter-regional urban agglomerations: Based on the urban agglomerations of west coast of Taiwan Straits, Yangtze River Delta and Pearl River Delta[J]. Economic Geography, 2019, 39(7):58-66, 75. ] |
[18] | 王松茂, 徐宣国, 马江涛, 等. 新疆旅游经济网络特征的时空演变研究——基于修正的引力模型及社会网络分析[J]. 干旱区地理, 2020, 43(2):458-465. |
[18] | [Wang Songmao, Xu Xuanguo, Ma Jiangtao, et al. Spatial and temporal evolution of the tourism economy network in Xinjiang: Based on modified gravity model and social network analysis[J]. Arid Land Geography, 2020, 43(2):458-465. ] |
[19] | 孔令章, 李晓东, 白洋, 等. 长距离高铁对沿线城市旅游经济联系的空间影响及角色分析——以兰新高铁为例[J]. 干旱区地理, 2019, 42(3):681-688. |
[19] | [Kong Lingzhang, Li Xiaodong, Bai Yang, et al. Spatial effect of long-distance high-speed railway on tourism economic link and role analysis of cities along the railway: A case of Lanzhou-Xinjiang high-speed rail[J]. Arid Land Geography, 2019, 42(3):681-688. ] |
[20] | 王圣云, 宋雅宁, 温湖炜, 等. 双向联系视域下长江经济带城市群网络结构——基于时间距离和社会网络分析方法[J]. 经济地理, 2019, 39(2):73-81. |
[20] | [Wang Shengyun, Song Yaning, Wen Huwei, et al. Network structure analysis of urban agglomeration in the Yangtze River economic belt under the perspective of bidirectional economic connection: Based on time distance and social network analysis method[J]. Economic Geography, 2019, 39(2):73-81. ] |
[21] | 赵正, 王佳昊, 赵静. “一带一路”中国段节点城市经济联系的空间分析——基于城市流强度模型的研究[J]. 干旱区资源与环境, 2018, 32(5):12-18. |
[21] | [Zhao Zheng, Wang Jiahao, Zhao Jing. A spatial analysis of urban economic connections among the node cities along the “One Belt and One Road” in China[J]. Journal of Arid Land Resources and Environment, 2018, 32(5):12-18. ] |
[22] | 彭翀, 林樱子, 顾朝林. 长江中游城市网络结构韧性评估及其优化策略[J]. 地理研究, 2018, 37(6):1193-1207. |
[22] | [Peng Chong, Lin Yingzi, Gu Chaolin. Evaluation and optimization strategy of city network structural resilience in the middle reaches of Yangtze River[J]. Geographical Research, 2018, 37(6):1193-1207. ] |
[23] | Lao X, Zhang X, Shen T, et al. Comparing China’s city transportation and economic networks[J]. Cities, 2016, 53:43-50. |
[24] | 魏国恩, 贺清云, 朱翔, 等. 基于空间插值的浙江省城市流时空演变特征研究[J]. 干旱区地理, 2019, 42(1):215-222. |
[24] | [Wei Guoen, He Qingyun, Zhu Xiang, et al. Temporal-spatial characteristics of urban flow intensity in Zhejiang Province based on spatial interpolation[J]. Arid Land Geography, 2019, 42(1):215-222. ] |
[25] | Scott J. Social network analysis: A handbook[M]. 2nd ed. London: SAGE, 2000. |
[26] | 刘军. 整体网分析讲义: UCINET软件实用指南[M]. 上海: 上海人民出版社, 2009. |
[26] | [Liu Jun. Overall network analysis: UCINET software usage guide[M]. Shanghai: Shanghai People’s Publishing House, 2009. ] |
[27] | Burt R S. Structural holes: The social structure of competition[R]. ID 1496205, Rochester, NY: Social Science Research Network, 1992. |
[28] | 李平, 杨伟松, 汪秉宏. 结构洞综合评价指标的构建与应用[J]. 江西科技师范大学学报, 2017(6):94-99. |
[28] | [Li Ping, Yang Weisong, Wang Binghong. Construction and application of comprehensive evaluation index in structural holes[J]. Journal of Jiangxi Science & Technology Normal University, 2017(6):94-99. ] |
[29] | 盛科荣, 杨雨, 张红霞. 中国城市网络的凝聚子群及影响因素研究[J]. 地理研究, 2019, 38(11):2639-2652. |
[29] | [Sheng Kerong, Yang Yu, Zhang Hongxia. Cohesive subgroups and underlying factors in the urban network in China[J]. Geographical Research, 2019, 38(11):2639-2652. ] |
/
〈 | 〉 |