[1] |
董金玮, 吴文斌, 黄健熙, 等. 农业土地利用遥感信息提取的研究进展与展望[J]. 地球信息科学报, 2020, 22(4):772-783.
|
|
[ Dong Jinwei, Wu Wenbin, Huang Jianxi, et al. State of the art and perspective of agricultural land use remote sensing information extraction[J]. Journal of Geo-information Science, 2020, 22(4):772-783. ]
|
[2] |
Gaur S, Mittal A, Bandyopadhyay A, et al. Spatio-temporal analysis of land use and land cover change: A systematic model inter-comparison driven by integrated modelling techniques[J]. International Journal of Remote Sensing, 2020, 41(23):9229-9255.
doi: 10.1080/01431161.2020.1815890
|
[3] |
陈劲松, 韩宇, 陈工, 等. 基于多源遥感信息融合的广东省土地利用分类方法——以雷州半岛为例[J]. 生态学报, 2014, 34(24):7233-7242.
|
|
[ Chen Jinsong, Han Yu, Chen Gong, et al. Land utilization mapping in Guangdong Province based on integration of optical and SAR remote sensing data[J]. Acta Ecologica Sinica, 2014, 34(24):7233-7242. ]
|
[4] |
李路, 孙桂丽, 陆海燕, 等. 喀什地区生态脆弱性时空变化及驱动力分析[J]. 干旱区地理, 2021, 44(1):277-288.
|
|
[ Li Lu, Sun Guili, Lu Haiyan, et al. Spatial-temporal variation and driving forces of ecological vulnerability in Kashi Prefecture[J]. Arid Land Geography, 2021, 44(1):277-288. ]
|
[5] |
Huang B, Zhao B, Song Y M. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery[J]. Remote Sensing of Environment, 2018, 214:73-86.
doi: 10.1016/j.rse.2018.04.050
|
[6] |
宋德娟, 张承明, 杨晓霞, 等. 高分二号遥感影像提取冬小麦空间分布[J]. 遥感学报, 2018, 24(5):596-608.
|
|
[ Song Dejuan, Zhang Chengming, Yang Xiaoxia, et al. Extracting winter wheat spatial distribution information from GF-2 image[J]. Journal of Remote Sensing, 2018, 24(5):596-608. ]
|
[7] |
Noi P T, Kappas M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery[J]. Sensors, 2018, 18(1):7233-7242.
|
[8] |
Son S, Park S, Lee S, et al. An assessment of support sector machine for land cover classification over South Korea[J]. Earth Resources and Environmental Remote Sensing/GIS Applications X, 2019, 19(10):2308, doi: 10.1117/12.2533045.
doi: 10.1117/12.2533045
|
[9] |
Zhang C, Yue P, Tapete D, et al. A multi-level context-guided classification method with object-based convolutional neural network for land cover classification using very high resolution remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 88:102086, doi: 10.1016/j.jag.2020.102086.
doi: 10.1016/j.jag.2020.102086
|
[10] |
孙坤, 鲁铁定. 顾及多尺度分割参数的FNEA面向对象分类[J]. 测绘通报, 2018(3):43-48.
|
|
[ Sun Kun, Lu Tieding. Research on FNEA object-oriented classification based on multi-scale partition parameters[J]. Bulletin of Surveying and Mapping, 2018(3):43-48. ]
|
[11] |
Zhu X X, Devis T, Mou L C, et al. Deep learning in remote sensing: A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36.
|
[12] |
汪传建, 赵庆展, 马永建, 等. 基于卷积神经网络的无人机遥感农作物分类[J]. 农业机械学报, 2019, 50(11):161-168.
|
|
[ Wang Chuanjian, Zhao Qingzhan, Ma Yongjian, et al. Crop identification of drone remote sensing based on convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11):161-168. ]
|
[13] |
Vali Ava, Comai Sara, Matteucci Matto. Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review[J]. Remote Sensing, 2020, 12(15):2495, doi: 10.3390/rs12152495.
doi: 10.3390/rs12152495
|
[14] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683
|
[15] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615
pmid: 28060704
|
[16] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [C]//Maier-Hein, Fritzsche K, Lehmann T, et al. Informatik aktuell. Heidelberg: Springer, 2015: 234-241.
|
[17] |
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network [C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2017: 6230-6239.
|
[18] |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184
|
[19] |
Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J]. CoRR, 2017, doi: abs/1706.05587.
doi: abs/1706.05587
|
[20] |
Chen L C, Zhu Y K, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]//Ferrari V, Hebert M, Sminchisescu C, et al. Computer Vision-ECCV 2018. Lecture Notes in Computer Science. Munich: Springer, 2018: 833-851.
|
[21] |
许慧敏, 齐华, 南轲, 等. 结合nDSM的高分辨率遥感影像深度学习分类方法[J]. 测绘通报, 2019(8):63-67.
|
|
[ Xu Huimin, Qi Hua, Nan Ke, et al. High-resolution remote sensing image classification by combining deep learning with nDSM[J]. Bulletin of Surveying and Mapping, 2019(8):63-67. ]
|
[22] |
杨建宇, 周振旭, 杜贞容, 等. 基于SegNet语义模型的高分辨率遥感影像农村建设用地提取[J]. 农业工程学报, 2019, 35(5):259-266.
|
|
[ Yang Jianyu, Zhou Zhenxu, Du Zhenrong, et al. Rural construction land extraction from high spatial resolution remote sensing image based on SegNet semantic segmentation model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5):259-266. ]
|
[23] |
刘文雅, 岳安志, 季珏, 等. 基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取[J]. 国土资源遥感, 2020, 32(2):124-133.
|
|
[ Liu Wenyan, Yue Anzhi, Ji Jue, et al. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model[J]. Remote Sensing for Land & Resources, 2020, 32(2):124-133. ]
|
[24] |
马新萍, 韩申山, 王磊, 等. 大西安地区土地利用类型时空演变分析[J]. 干旱区地理, 2020, 43(2):499-507.
|
|
[ Ma Xinping, Han Shenshan, Wang Lei, et al. Spatial and temporal evolution of land use types in the greater Xi’an area[J]. Arid Land Geography, 2020, 43(2):499-507. ]
|
[25] |
田艳君, 石莹, 帅艳民, 等. 基于遥感时序特征的地表覆被信息提取[J]. 干旱区地理, 2021, 44(2):450-459.
|
|
[ Tian Yanjun, Shi Ying, Shuai Yanmin, et al. Land cover information retrieval from temporal features based remote sensing images[J]. Arid Land Geography, 2021, 44(2):450-459. ]
|
[26] |
白燕英, 高聚林, 张宝林. 基于Landsat 8影像时间序列NDVI的作物种植结构提取[J]. 干旱区地理, 2019, 42(4):893-901.
|
|
[ Bai Yanying, Gao Julin, Zhang Baolin. Extraction of crop planting structure based on time-series NDVI of Landsat 8 images[J]. Arid Land Geography, 2019, 42(4):893-901. ]
|
[27] |
顾炼. 基于深度学习的遥感图像建筑物检测及其变化检测研究[D]. 杭州: 浙江工商大学, 2018.
|
|
[ Gu Lian. Detection for buildings and their changes in remote sensing images based on deep learning[D]. Hangzhou: Zhejiang Gongshang University, 2018. ]
|
[28] |
Venugopal N. Automatic semantic segmentation with deeplab dilated learning network for change detection in remote sensing images[J]. Neural Processing Letters, 2020, 51(3):2355-2377.
doi: 10.1007/s11063-019-10174-x
|
[29] |
Liu R Y, Kuffer M, Persello C. The temporal dynamics of slums employing a CNN-based change detection approach[J]. Remote Sensing, 2019, 11(23):2844, doi: 10.3390/rs11232844.
doi: 10.3390/rs11232844
|
[30] |
季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测[J]. 武汉大学学报(信息科学版), 2020, 45(2):233-241.
|
|
[ Ji Shunping, Tian Siqi, Zhang Chi. Urban land cover classification and change detection using fully atrous convolutional neural network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2):233-241. ]
|
[31] |
邓铭江. 天山北坡经济带“三生空间”发展格局与智能水网体系建设[J]. 干旱区地理, 2020, 43(5):1155-1168.
|
|
[ Deng Mingjiang. Development pattern of production-living-ecological spaces and construction of a smart water network system for the economic belt on the north slope of the Tianshan Mountains[J]. Arid Land Geography, 2020, 43(5):1155-1168. ]
|
[32] |
韩会然, 杨成凤, 宋金平. 北京市土地利用变化特征及驱动机制[J]. 经济地理, 2015(5):148-154.
|
|
[ Han Huiran, Yang Chengfeng, Song Jinping. The spatial-temporal characteristic of land use change in Beijing and its driving mechanism[J]. Economic Geography, 2015(5):148-154. ]
|
[33] |
严彩虹, 周龙, 唐震, 等. 莫索湾垦区冬枣大棚温度特征变化及日最低气温预报研究[J]. 浙江农业科学, 2018, 59(3):445-448.
|
|
[ Yan Caihong, Zhou Long, Tang Zhen, et al. Study on temperature characteristic change and daily minimum temperature forecast of dongzao in Mosuowan reclamation area[J]. Journal of Zhejiang Agricultural Sciences, 2018, 59(3):445-448. ]
|
[34] |
陈曦, 常存, 包安明, 等. 改革开放40 a来新疆土地覆被变化的空间格局与特征[J]. 干旱区地理, 2020, 43(1):1-11.
|
|
[ Chen Xi, Chang Cun, Bao Anming, et al. Spatial pattern and characteristics of land cover change in Xinjiang since past 40 years of the economic reform and opening up[J]. Arid Land Geography, 2020, 43(1):1-11. ]
|
[35] |
郭飞, 陈万山, 吴雪勤, 等. 新疆生产建设兵团第八师石河子市统计年鉴—2019[M]. 北京: 中国统计出版社, 2019: 49-52.
|
|
[ Guo Fei, Chen Wanshan, Wu Xueqin, et al. Statistical yearbook of Division 8 of the Xinjiang Production and Construction Corps: 2019[M]. Beijing: China Statistical Publishing House, 2019: 49-52. ]
|