收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (10): 1793-1803.doi: 10.12118/j.issn.1000-6060.2024.780 cstr: 32274.14.ALG2024780

• 生态与环境 • 上一篇    下一篇

草地光伏系统生态适宜性的研究进展

陈春波1,2,3(), 李刚勇3,4(), 陈东波5, 赵炎3,6, 彭建3,4, 王玉刚1, 李均力1,2,3   

  1. 1.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室/干旱区生态安全与可持续发展重点实验室,新疆 乌鲁木齐 830011
    2.新疆遥感与地理信息系统应用重点实验室,新疆 乌鲁木齐 830011
    3.干旱区草地生态系统遥感监测实验室,新疆 乌鲁木齐 830049
    4.新疆维吾尔自治区草原总站,新疆 乌鲁木齐 830049
    5.四川省农业科学院生物技术核技术研究所,四川 成都 610066
    6.昌吉州林业和草原技术推广中心,新疆 昌吉 831100
  • 收稿日期:2024-12-23 修回日期:2025-01-06 出版日期:2025-10-25 发布日期:2025-10-27
  • 通讯作者: 李刚勇(1983-),男,硕士,正高级工程师,主要从事天然草地智慧监测等方面的研究. E-mail: ligangyong1013@hotmail.com
  • 作者简介:陈春波(1985-),男,博士,高级工程师,主要从事天然草地智能感知诊断等方面的研究. E-mail: ccb_8586@ms.xjb.ac.cn
  • 基金资助:
    新疆维吾尔自治区重大科技计划专项(2024A03011-1);干旱区林草资源一体化监测与预警(E3500111);新疆维吾尔自治区重点研发项目(2024B03024-1);自治区林草科技任务(XJLCKJ-2025-10)

Research progress on the ecological suitability of grassland photovoltaic ecosystem

CHEN Chunbo1,2,3(), LI Gangyong3,4(), CHEN Dongbo5, ZHAO Yan3,6, PENG Jian3,4, WANG Yugang1, LI Junli1,2,3   

  1. 1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. Key Laboratory of GlS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
    3. Joint Laboratory for Remote Sensing Observation of Grassland Ecosystem in Arid Area, Urumqi 830049, Xinjiang, China
    4. Xinjiang Grassland Technical Promotion Station, Urumqi 830049, Xinjiang, China
    5. Biotechnology and Nuclear Technology Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
    6. Forestry and Grassland Technology Promotion Center of Changji Prefecture, Changji 831100, Xinjiang, China
  • Received:2024-12-23 Revised:2025-01-06 Published:2025-10-25 Online:2025-10-27

摘要:

光伏太阳能发电正在以大规模集中式迅猛发展,有效减少了煤炭、石油等化石能源的消耗,为应对气候变化作出了重要贡献。以光伏太阳能发电站园区(简称“光伏园区”)为底座的草地光伏生态系统,旨在综合开发太阳能和系统保护草地生态,这是推动主体能源更替、实现碳达峰碳中和目标的迫切需要。针对草地光伏系统的生态适宜性,总结了国内外光伏园区的建设及其运营对局域(光伏组件前檐、板下、后檐、板间以及光伏园区外)微生境(陆面能量传输、近地表微气候与土壤理化性质)的影响,探究了光伏园区内生物群落(植物、动物与土壤微生物)对扰动生境的适应性演替与生物地球化学循环(碳循环)。结合绿色低碳、数智化与可持续发展的时代主题,分析了草地光伏系统在生态适宜性研究中的不足与未来发展方向,以期为“草地光伏+”绿色发展模式(如光伏产草、草光互补)与荒漠化综合防治的深入研究提供参考。

关键词: 草地光伏系统, 生态适宜性, 光伏治沙, 光伏产草, 草光互补模式, 光伏太阳能发电站园区

Abstract:

Photovoltaic (PV) solar power generation is experiencing rapid growth, particularly in large-scale centralized systems. This expansion helps reduce reliance on fossil fuels (coal, oil, etc.) and alleviates climate change pressures. Since 2009, global PV installations have increased by approximately 41% and are projected to grow nearly tenfold by 2040. In China, the area dedicated to PV parks expanded from 5.86 km2 in 2010 to 2920 km2 in 2020, reaching about 3712 km2 by the end of 2022. Grassland photovoltaic ecosystems (GPVEs) established in these parks not only optimize solar energy use but also contribute to grassland conservation. Furthermore, they play an increasingly important role in mitigating climate warming and advancing carbon neutrality. This study examines the effects of large-scale PV parks on local microhabitats both within and outside the park boundaries. PV installations alter microhabitat factors, creating variation in conditions across the front, middle, beneath, and between PV arrays. Generally, such disturbances arise from changes in near-surface energy transmission and equilibrium, leading to modified microclimates, soil temperature, humidity, and physicochemical properties. The adaptability and succession of biological communities (including plants, animals, and soil microorganisms) were investigated in relation to these altered habitats, alongside changes in biogeochemical cycles. PV parks can enhance plant productivity, increase aboveground biomass, and improve vegetation coverage. Notable changes in plant density, species composition, and diversity are largely driven by shading effects. Animal communities show varying adaptability as the parks operate, while PV arrays provide shade for livestock, reducing air temperature and skin humidity, thereby lowering heat stress and thermoregulation costs. Soil microorganisms, essential for sustaining ecosystem services, are directly affected by terrestrial biogeochemical cycles, especially carbon cycling. PV development influences carbon and nitrogen storage in plants (aboveground and belowground) and soil, as well as greenhouse gas emissions. This work integrates themes of green low-carbon technology, digital intelligence, and sustainable development. It highlights the shortcomings and future development directions of GPVEs in an ecological suitability framework. The findings provide guidance for advancing the green development model of “grassland photovoltaics plus” (e.g., photovoltaic grass production and grass-light complementary systems) and for promoting integrated desertification control.

Key words: grassland photovoltaic ecosystem, ecological suitability, desertification control with photovoltaic, grass growing boosted by photovoltaic array, grassland photovoltaic complementary mode, photovoltaic solar power park (PV park)